Breakthrough brings nano technology within commercial reach

Source:Xinhua Published: 2013-1-7 14:44:46

Scientists at Australia's key scientific research centre (CSIRO) are soon to announce the successful production of a new two-dimensional material that could revolutionize the electronics market, making "nano" more than just a marketing term.

The material made up of layers of crystal known as molybdenum oxides has unique properties that encourage the free flow of electrons at ultra-high speeds. The application for high- speed computing and electronics have the potential to revolutionize a vast array of industries.

The announcement will bring the CSIRO's objective of innovation within new material science into sharp relief for 2013 as Australia seeks to develop industries beyond its resource-heavy export network.

The work of the materials science and manufacturing sector of the CSIRO occurs at the intersection of biology, chemistry, and physics delivering what the Australian government's hopes will be deliverable returns on the health, aerospace, defense and resource exploration industries.

In a paper published in the January issue of materials science journal Advanced Materials, the researchers reveal how they have adapted a revolutionary material known as graphene to create a new conductive nano-material.

Graphene was created in 2004 by scientists in the UK and secured its inventors a Nobel Prize in 2010.

While graphene supports high-speed electrons, its physical properties prevent it from being used for high-speed electronics.

The CSIRO's Dr Serge Zhuiykov said the new nano-material was made up of layered sheets similar to graphite layers that make up a pencil's core.

"Within these layers, electrons are able to zip through at high speeds with minimal scattering," Dr Zhuiykov said.

"The importance of our breakthrough is how quickly and fluently electrons which conduct electricity are able to flow through the new material."

Royal Melbourne Institute of Technology's Professor Kourosh Kalantar-zadeh said the researchers were able to remove "road blocks" that could obstruct the electrons, an essential step for the development of high-speed electronics.

"Instead of scattering when they hit road blocks, as they would in conventional materials, they can simply pass through this new material and get through the structure faster," Professor Kalantar- zadeh told Xinhua.

"Quite simply, if electrons can pass through a structure quicker, we can build devices that are smaller and transfer data at much higher speeds.

"This breakthrough lays the foundation for a new electronics revolution and we look forward to exploring its potential."

According to the CSIRO, the new material was manipulated to convert it into a semiconductor and nanoscale transistors were then created using molybdenum oxide.

The result was electron mobility values far exceeding the current industry standard for low dimensional silicon.

The work, a collaboration with RMIT doctoral researcher Sivacarendran Balendhran, was supported by the CSIRO Sensors and Sensor Networks Transformational Capability Platform and the CSIRO Materials Science and Engineering Division.

It was also a result of collaboration between researchers from Monash University, University of California Los Angeles (UCLA), CSIRO, Massachusetts Institute of Technology (MIT) and RMIT.

Posted in: IT

blog comments powered by Disqus